Microsoft Stock Price Prediction with Machine Learning
In this project, I have used a machine-learning algorithm to predict the stock price of one of the largest tech companies named Microsoft using Python.
Dataset Link: MSFT.csv
Step-1: Import necessary libraries and data exploration on given data.
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
plt.style.use('fivethirtyeight')
data = pd.read_csv("MSFT.csv")
print(data.head())Step-2: Data Visualization
plt.figure(figsize=(10, 4))
plt.title("Microsoft Stock Prices")
plt.xlabel("Date")
plt.ylabel("Close")
plt.plot(data["Close"])
plt.show()Step-3: Finding Co-relation between data
print(data.corr()) sns.heatmap(data.corr()) plt.show()
Step-4: Splitting Data into train and test data
x = data[["Open", "High", "Low"]] y = data["Close"] x = x.to_numpy() y = y.to_numpy() y = y.reshape(-1, 1) from sklearn.model_selection import train_test_split xtrain, xtest, ytrain, ytest = train_test_split(x, y, test_size=0.2, random_state=42)
Step-5: Applying machine learning model
from sklearn.tree import DecisionTreeRegressor
model = DecisionTreeRegressor()
model.fit(xtrain, ytrain)
ypred = model.predict(xtest)
data = pd.DataFrame(data={"Predicted Rate": ypred})
print(data.head())




Leave a Reply