String methods in Pandas

In this tutorial, we will learn some of the most commonly used string methods in Pandas. These string methods are applied to a series in Pandas. These methods are mainly used for string manipulation. So, let’s begin the tutorial.

Series in Pandas

We will consider the following series.

import pandas as p
data1 = (['heLLo','weLcoMe','to','COdespeedy'])  
d1 = p.Series(data1)
print(d1)

OUTPUT:

0 heLLo
1 weLcoMe
2 to
3 COdespeedy
dtype: object

1) upper() method in Python pandas

This method is used to convert the series to uppercase.

import pandas as p
data1 = (['heLLo','weLcoMe','to','COdespeedy'])  
d1 = p.Series(data1)
print(d1.str.upper())

OUTPUT:

0 HELLO
1 WELCOME
2 TO
3 CODESPEEDY
dtype: object

2) lower() method

This method is used to convert the series to lowercase.

import pandas as p
data1 = (['heLLo','weLcoMe','to','COdespeedy'])  
d1 = p.Series(data1)
print(d1.str.lower())

OUTPUT:

0 hello
1 welcome
2 to
3 codespeedy
dtype: object

3) len() method

This method is used to return the length of each element in the series.

import pandas as p
data1 = (['heLLo','weLcoMe','to','COdespeedy'])  
d1 = p.Series(data1)
print(d1.str.len())

OUTPUT:

0 5
1 7
2 2
3 10
dtype: int64

4) isdigit() method

This method is used to check if the elements of the series are digits or not. If it is a digit, it returns True, otherwise, it returns False.

import pandas as p
data1 = (['heLLo','weLcoMe','to','COdespeedy'])  
d1 = p.Series(data1)
print(d1.str.isdigit())

OUTPUT:

0 False
1 False
2 False
3 False
dtype: bool

5) match() method

This method is used to match a particular string with all the elements of the series. If the string matches with an element, it returns True. Otherwise, it returns False.  Here, we will match the string “COdespeedy” with all the elements of the series.

import pandas as p
data1 = (['heLLo','weLcoMe','to','COdespeedy'])  
d1 = p.Series(data1)
print(d1.str.match('COdespeedy'))

OUTPUT:

0 False
1 False
2 False
3 True
dtype: bool

Also, read Understanding Python pandas.DataFrame.boxplot

Leave a Reply

Your email address will not be published.