Rearrange columns in Dataframe in Python – Pandas
In this tutorial, we will learn how to Rearrange columns in Dataframe in Python.
You are given a dataframe. Your task is to reorder/rearrange the data columns.
There are many methods to reorder/rearrange the data columns in Python.
- Using loc method
- Using iloc method
- By passing a list of column(s)
Preparation – Importing required libraries & creating dataset
import pandas as pd #Creating test data to learn data = {'Sr no': [1, 2, 3, 4, 5, 6], 'Name': ['Ram', 'Raju', 'Priya', 'Tinku', 'Monu', 'Mohan'], 'Age': [45, 16, 18, 34, 25, 20]} df = pd.DataFrame(data = data) print("Original Dataframe") print(df)
Original Dataframe: Sr no | Name | Age 0 1 | Ram | 45 1 2 | Raju | 16 2 3 | Priya | 18 3 4 | Tinku | 34 4 5 | Monu | 25 5 6 | Mohan | 20
Method 1 – Using loc method
In this, we will pass the different columns name(s) in the loc to change the order of dataframe columns.
#Passing the column names in the list format print("Rearranged dataframe using loc") df.loc[:,['Age','Name','Sr no']]
Rearranged dataframe using loc Age | Name | Sr no 0 45 | Ram | 1 1 16 | Raju | 2 2 18 | Priya | 3 3 34 | Tinku | 4 4 25 | Monu | 5 5 20 | Mohan | 6
Method 2 – Using iloc method
In this, we will pass the column index in the iloc to change the order of dataframe columns.
#Passing the column names in the list format print("Rearranged dataframe using iloc") df.iloc[:,[1,2,0]]
Rearranged dataframe using iloc Name | Age | Sr no 0 Ram | 45 | 1 1 Raju | 16 | 2 2 Priya | 18 | 3 3 Tinku | 34 | 4 4 Monu | 25 | 5 5 Mohan | 20 | 6
Method 3 – By passing a list of column(s)
In this, we will pass the list of columns in the desired sequence to change the order of dataframe columns.
#Passing the column names in the list format print("Rearranged dataframe by passing list") df[['Age', "Name", "Sr no"]]
Rearranged dataframe by passing list Age | Name | Sr no 0 45 | Ram | 1 1 16 | Raju | 2 2 18 | Priya | 3 3 34 | Tinku | 4 4 25 | Monu | 5 5 20 | Mohan | 6
We’ve successfully learned to Rearrange columns in Dataframe in Python, simplifying the solution for better understanding. I hope you found this tutorial enjoyable!
Leave a Reply